
On Using the Lucene Based Indexer
and Search Application

Version 2.1

Tom Louton, Schering

Copyright © 2005

Table of Contents
Search Engines ... 1
About the application and distribution ... 2
Indexing .. 4
Known Indexing Problems .. 5
Updating an Index ... 6
Searching .. 7
Presentation ... 9
Organizing the application, batch files ..10
Bibliography ...11
Glossary ...11

KYUUDOU -- seek enlightenment

Search Engines
In this context, the creation of a search engine is a three step process

1. Indexing

2. Searching

3. Presentation

I will briefly describe each process.
Indexing. This is the fundamental step to all searching. Roughly described as follows: a document is read
(parsed) and the text is then divided into tokens (this means really, words -- collections of letters separated
by blank spaces). If this is the first document and the first token, the token is added to the "index". Further,
to the token the number of the document (in this case 1) is added to the token. If the index already has
tokens, then if the token is in the index, the document number of the current document is added to the
token, otherwise the token with document number is added to the index. Consider an index as a collection
of tokens (words for our purposes) and a vector of document numbers.
The process of tokenizing (extracting the tokens) is also often accompanied by a filtering and transforma-
tion process. In general it is useful to change all characters to lower case. Further it might be advantageous

1

to label the words with their part of speech in the context in which found (POS labeling). So called "stop
words" are dropped and not indexed. By stop words we mean words such as "I", "it"(but IT, information
technology) , "the", which occur in every document and do not contribute in any way to the being able to
fish this document out of a group. Sometimes it is advantages to reduce a word to its stem
(grammatically). For example, an adjective big, bigger, biggest would all be reduced to "big", or a verb to
go, went, gone, going would all be reduced to "go".
So the tokens and the associated vectors of document numbers are stored in the index. But that is not all.
The documents represented as Lucene documents are also stored. This is not the Word, PDF or what have
you, document, but an invocation of a Lucene class called document. When indexing, the user
(programmer actually) decides what information is to be stored in the Lucene document, in our case for
example, the name of the file in which the document is stored, the date it was created, last changed, as
well as a sort of summary.
Searching. Searching is then the process of taking a key word or an expression (e.g., "a" AND "b" -- with
short cut +a +b) and finding those documents in which it is present. There are many variations and the
tools we have at hand allow simple key word searches (where there is just one key word), so called query
searches (this allows a more complex syntax involving more than one key word. The query search also al-
lows wild card searches. Query searches are the only type of search realized in this system.
Range searches, for example with dates and such, have not been realized, but could be. Also phrase
searches and fuzzy searches (where tokens which in some way are "near" the desired word) are not real-
ized -- Query searches support fuzzy searches and phrase searches to an extent. See the chapter on search-
ing.
A search results in a collection of documents or in the case we have, references to documents.
Presentation. The step of presenting the information to the user involves deciding which information con-
tained in the documents won is to be presented and how. Recall, that the information retrieved from a
search is not the physical document, but the parsed information which is stored in the index. The user is
offered an HTML file containing salient information and a reference to the document. This HTML file can
be configured (appearance only) by the user. There are rough hints as to how to do this.

About the application and distribution
This application consists of two separate user interfaces, one to allow the user to index a collection of doc-
uments and the other to search that index and find the documents in it. The general usage is to create an
index and then use the index as a basis for searching.
The program is started via a DOS batch file (which can be started by double clicking on the file name in
the explore (file explorer). There are two batch files, index.bat and search.bat, with, not surprisingly, in-
dex.bat starts the indexer interface and search the search interface. For the potential Linux or other Unix
user, I have included index.sh and search.sh as batch files for such systems. Do not edit these files with
Windows editors! In a Windows environment, each line ends with CR and LF (carriage return, 0D, and
line feed, 0A), whereas in a Unix environment, only LF is used.
I have added a possibility to start the program with a default index directory (that is the directory in which
the index is to be written and the directory in which the search machine finds its index.)
The program is stored in the directory, C:\searchTest, for example. The directory contains one directory
"data" and data contains several files. Some images, tkl.png and lucene.gif used for the entry screen,
screen shots for this document, searchresults.css (more later about this), the two configuration files
(indexer.defaults and search.defaults) and diverse documents, this included. The searchTest directory con-
tains the following

index.bat This program starts the application to do indexing in a Windows en-
vironment. It need no parameters and can be started with the windows
file explorer with a double click of the mouse.

index.sh This program starts the application to do indexing in a Linux (Unix)
environment. It needs no parameters and can be started with the file
explorer with a double click of the mouse. The user must set the per-
missions to rwxr.xr.x (as an example). It can also be set up as a
launcher application.

search.bat This batch program starts the search application. It also has no para-
meters and as above can be started with a double mouse click.

search.sh This batch program starts the search application in a Linux (or Unix)
environment. It can be started from the file explorer or it can be set up
as a program launcher. Be sure to set the permissions (suggest at least
rwxr.xr.x).

On Using the Lucene Based Indexer and
Search Application

2

indexUpdate.bat A batch file to start the update user interface. As with the other batch
files this can be started from the windows explorer.

indexUpdate.sh The UNIX (Linux) version to start the index update user interface.
search.defaults (in directory
data)

This is a Java properties file. See the file for an explanation. At the
moment it is set for Windows and the only item realize now is the call
for the Internet explorer which is used to view the log, the documenta-
tion and the results. This option is for users in other environments
(Linux, Mac, etc) who wish this functionality.

index.defaults (in directory
data)

This is as the search.defaults in that it needs to communicate to the
system how it can find firefox or iexplore.exe (for viewing the docu-
mentation) and notepad or gedit for viewing the log. But it has more
information. Namely a list of abbreviations for the file suffix and the
corresponding class to read them. See the section

indexandsearch.jar This is the jar file (jar means Java Archive) which contains the index-
ing program and the search program, as well as all of the necessary
support classes. (A class is in effect a sort of complex variable with
associated programs to manipulate the associated data.)

jtidy.jar This contains the Java classes for the JTidy application. This applica-
tion transforms an HTML file (or data stream) into syntactically cor-
rect XML. The problem is that in HTML it is not essential for a tag to
have a closing tag and in XML every tag must have a closing tag. e.g.,

 (Break) is OK in HTML, but in an XML file this would be in er-
ror, it must be either,
 or
</br>. This is necessary to read the
HTML files we have. (See http://tidy.sourceforge.net/)

log4j-1.2.9.jar This is necessary for PDFBox. This is a so called logger, it servers to
organize messaging of events and errors. We do not use it directly, it
is simply necessary for PDFBox. See http://logging.apache.org/ .

lucene-1.4.3.jar The Lucene application is the basis for our index and search programs.
It is also an Apache application. See

PDFBox-0.7.1.jar PDFBox is a package to render PDF files (in effect to extract a text
version from a PDF file). See http://www.pdfbox.org/. PDF Box is
also a SourceForgeNet project.

tm-extractors-0.4.jar Text mining extractors is a collection used to render Microsoft Word
documents into text. See http://www.textmining.org . I chose this over
POI, simply because this works well and POI doesn't seem to be so
developed. Be ware that there are some classes org.apache.poi.utils
which are not in concordance with PowerPointExtractor. So be sure to
have poi-3.0... before text mining jar.

xercesImpl.jar Xerces is also an Apache project for XML parsing. To parse in this
sense means to read with respect to the language (XML). That is to
not only read the contents, but put read with respect to the XML tags.
See http://xml.apache.org/xerces2-j/.

xml-apis.jar This jar file belongs to the Xerces project. See above.
xmlParserAPIs.jar The XML parser API collection is also part of the Xerces project. I

need it for the class XML Serializer. I need this to write the results of
the search to an HTML file (which is also XML compliant, a so called
XHTML).

poi-scratch-
pad-3.0-alpha1-20050704.jar

Poor Obfuscation Implementation (referring to Microsoft propitiatory
data formats) is the name of the Apache project. We use this to read
Power Point presentations . http://jakarta.apache.org/poi/ . We use a
subproject titled HSLF, I do not yet know what this stands for, but
HSSF (for working with EXCEL) stands for "Horrible Spread Sheet
Format". See Poi Terms .

poi-3.0-alpha1-20050704.jar This is the main jar for the POI project. This supports the PowerPoin-
tExtractor.

As one can see this application is based on the work of others, all in the open source community. I would
like to explicitly acknowledge this here. The source code of this application is available in the distribution.

On Using the Lucene Based Indexer and
Search Application

3

http://tidy.sourceforge.net/
http://logging.apache.org/
http://www.pdfbox.org/
http://www.textmining.org
http://xml.apache.org/xerces2-j/
http://jakarta.apache.org/poi/

Indexing
"Eine führerlose Menge ist zu nichts nütze" Machiavelli, "Discorsi",43
New with version 1. The following file types can now can be indexed.

blk I have labeled this blank, which includes files with no suffix , for ex-
ample "license" or files with names such as "read.me".

csv This is the standard EXCEL format called comma separated variable,
which in spite of the name, I had until recently only seen semi-colons
used. In a German environment this is clearly necessary. However, in
the samples I have from our outside sources indeed us a comma. I use
a comma in my realization. Should a European file (semi-colon) be
the separator, the consequence would be that lots of "numbers" would
be indexed. e.g., 1;0 or 123;78;0 etc.

doc WinWord document format. I use the tool form textmining.org for
this.

html For HTML (Hyper Text Markup Language) files. I use JTidy to put
this into XML and then use DOM (w3.org) model to read the various
nodes.

pdf Adobe PDF (Portable Document Format). I use the PDFBox tool kit
to extract the text from these.

ppt Microsoft Power Point document format. I use the POI PowerPoin-
tExtractor to the text. This is not a really released version, but accord-
ing to my tests it functions. See POI Terms)

rtf This is the Rich Text Format, a Microsoft format which has been pub-
lished. I use the Java standard RTFToolKit (javax.swing.text.rtf.)

txt Text files are of course the easiest to handle.
xls This is the Excel format (see POI Terms). Only the text is extracted

and indexed from such files.
The basic procedure is to get the contents of the file as a text string and feed the text string to the analyzer.
Technical issues on the realization of the file readers. It is possible in Java to bind a class (classes are
sort of like programs) while the program is running. This means that for the indexer, we can decide which
readers to use via the configuration file. At the time of this writing, I have written the following classes:

The term filetype followed by the file suffix (if more than one, use comma(,) to separate
and after the semicolon followed by the class name and path.
filetype.csv:com.theloutons.search.specialreaders.CSVReader
filetype.doc:com.theloutons.search.specialreaders.DOCReader
filetype.xls:com.theloutons.search.specialreaders.XLSReader
filetype.html,htm:com.theloutons.search.specialreaders.HTMLReader
filetype.pdf:com.theloutons.search.specialreaders.PDFReader
filetype.ppt:com.theloutons.search.specialreaders.PPTReader
filetype.rtf:com.theloutons.search.specialreaders.RTFReader
filetype.xml,xsl:com.theloutons.search.specialreaders.XMLReader
filetype.txt:com.theloutons.search.specialreaders.TXTReader
filetype.blk,me,:com.theloutons.search.specialreaders.TXTReader

This is in the so called "properties format" that is a key word followed by : (or !) as a separator and then
the name of the class to be loaded. I have structured the key word as filetype to tell the program that in-
formation of this type is here. Then the suffix (or suffixes) followed by then the class name after the separ-
ator. There is a button to start the configuration editor associated with this system. This data is necessary
only for the indexer. There are two configuration files, one indexer.defaults and
search.defaults.
Thus it is possible to choose which types of files one wishes to index as well as the reader. The reader
simply extracts the textual information from the file and returns a byte stream (a string, or a series of char-
acters) to the indexer. For any file type the user wishes not to use, put a hash (#) mark before it, as in the
first two lines.
Details about the indexing process. At the moment the indexing procedure is limited to filtering out
common English language stop words and setting all letters to small case. It would be possible to extend
this to be able to choose different analyzing methods.

On Using the Lucene Based Indexer and
Search Application

4

The decisions to be made on the part of the user are a) where to store the index and b) what to index.
The index must be stored in a completely different place from the collection of documents to be indexed.
Also the program is at the moment conceived that it will index only one directory. The suggested proced-
ure then would be to chose the target, the directory in which to write the index and then to chose the
source, the directory containing the files to be indexed. The tell the system to begin -- push the button "in-
dex now".
A word of CAUTION once you start to create the index, any contents found in the directory chosen will be
erased. A log book is written to the directory containing the index (log.txt). This contains a list of files
which for some reason or another could not be indexed, as well as the number of files indexed and start
and end time. Time is in "Java time", that is number of milliseconds since January 1, 1970, 00:00:00.000
GMT. I do not bother with the date. Further, a sort of copy of the indexer.defaults file so that one can later
see what sort of files were indexed.

Note
A view of the indexing user interface

Figure 1. Indexer Application Screenshot

Known Indexing Problems
There is the potential for problems occurring and this section is intended to support the user who may en-
counter a serious problem. That is problem which stops the application and prevents indexing. The follow-
ing is a list of the known problems and suggestions on how to handle them.
An "out of memory" exception is an exception I cannot catch and handle. The program stops. I have ob-
served this with PDF and PPT files only.

blnk (miscellaneous col-
lection of file types, but
viewed as text files)

I have not encountered any problems here. Suffixes me (read.me), blank.
More can be added if needed.

CSV (Comma Separated
Variable)

This is the Excel export format. I have not had any problems as such here.
One point though, I filter out numbers etc. That is only cells with "non"
number contents are indexed.

On Using the Lucene Based Indexer and
Search Application

5

DOC (WinWord File) I have not had any problem here.

HTML (Hyper Text
Markup Language)

The user will see an occasional log (in the DOS window or Terminal) entry
mentioning XML problems. This means that JTidy (this is a program which
takes HTML files and adds corrections to make them XHTML. I need this
to use the Document Object Model to extract the text. This is not important
for the user.

PDF (Adobe Portable
Document Format)

If an "Out of Memory" error occurs, then find the file and remove it. I do
not know why this occurs nor do I know how to prevent this. I have noticed
6 such files from Decision Resources which caused this. Otherwise I have
not had any problems.

PPT (Microsoft Power
Point)

I had one occurrence of an "out of memory" exception. This was a file with
no text whatsoever, it had only pictures. I added text at one place and that
removed the problem, even when I later erased the text, there was still no
problem.

TXT (Text files) Text files have up to now caused no problems.

XLS (Excel) I extract only the text fields from the Excel file. No problems have occurred
here.

XML If the XML file is not a valid XML file(e.g., a tag not completed) an excep-
tion occurs and the error is written to the log and the parsing stops.

Updating an Index
God, don't let me die, I have got so much to do yet! (Attributed to The Kingfish, Huey
Long, 1935, as his last words.)

There is a separate screen to update an index. To use this it is for practical purposes the same as creating
an index. One must select the directory which contains the index. Should this directory not contain an in-
dex, a message with a note to correct this is given. The directory to containing the documents to be in-
dexed (updated) must not be identical with the original document directory. This means that one can index
one directory and at a later point in time add a second one to the original.
How does this work? The program first checks to make sure the index directory really contains an index.
Then it recursively (as the indexer) parses the directory containing the documents to be indexed. If a docu-
ment is not in the index it is added then and there. If it be present in the index the dates are compared and
if the file be newer, the old one is removed and the newer version is added.

On Using the Lucene Based Indexer and
Search Application

6

Figure 2. Index Update Screenshot

Searching
"Suchet, so werdet ihr finden" Lukas, 11.9
There is one type of search realized: a parsed search. Parsed in this case means that the string which is
read in is analyzed. This is a very flexible search engine. That is a search can be started with several words
using AND OR etc. (See below for complete instructions).
It would be possible to add different search functionality in the future.
Quick introduction to Lucene Parsed Query Search Syntax. The symbol back slash "\" is called in this
context the escape symbol, and it is used to "escape characters". If you wish to search for any of the fol-
lowing symbols in your search string, they must be escaped:

\ + - !() : ^] { } ~ * ?

Thus if one wishes to search for ? then \? must be entered. The boolean (yes/no) terms AND OR can be
used (Must be written in caps.). Placing NOT in front of a term negates it. NOT term would look for those
documents without term in them. NOT may not be the first item in an expression.

Warning
The boolean terms MUST be written in capital letters!

Boolean examples

a AND b Can also be written +a +b. Searches for all documents containing a and b.

a OR b Can also be written a b -- a and b separated with blank. Find all documents with a or b
present.

a AND NOT
b

Can also be written as +a -b. All documents with a and not b.

The use of parentheses is allowed to group boolean terms.

On Using the Lucene Based Indexer and
Search Application

7

Two words such as bbbb cccc would be taken to mean bbbb OR cccc. If one writes (bbbb and cccc) the
system looks for "bbbb" or "and" or "cccc". The word and is a stop word (for us) and therefor never
present. Thanks to Peter for noting this!

Exact searches

"term1 term2" will find those documents which contain term2 exactly proceeded by term1.
See proximity searches below. Note that if a document contains Schering-
Plough, Schering_Plough or Schering Plough, the term "schering plough"
would find all three variants because -,_. and blank are token separators.

Grouping examples

(a AND b) OR (c OR
NOT d)

Either the document contains a and b or it contains c but not d.

Wild cards can also be used. By a wild card we mean the use of the symbol * (zero or more characters) ?
zero or one character. The wild card character may not begin the search.

Wild card examples

wood* would deliver all documents which contain a text string beginning with to and with 0 or n
characters following, so here we might find wood, woodruff, woodpecker, woodnote, wood-
man, woodenman etc.

wood? would only deliver wood or woody. ? is often used to find things abc?def, words starting with
abc and ending with def either 6 or 7 characters long.

Proximity searches

"term1 term2"~n This will find those documents which contain term1 and term2 where term2
is proceeded by term1 with a gap of max n words. Recall here too that aside
from blank, "-" and "_" function to separate tokens.

Parsed Query Fuzzy Search

wuzza~ fuzzy for example would be found. This is based on a complex algorithm called the Leven-
shtein distance [http://www.merriampark.com/ld.htm]. I have not studied this in detail and
for the moment it seems to me rather unpredictable. I have looked at the web site however,
and the explanation is clear and I think understandable, but still sufficiently complex that I
could not quickly guess the results of a fuzzy search.

On Using the Lucene Based Indexer and
Search Application

8

http://www.merriampark.com/ld.htm
http://www.merriampark.com/ld.htm

Figure 3. Search Interrface Screenshot

Presentation
The results are presented as HTML files (actually XHTML) and the styles are done with CSS (Cascading
Style Sheets). I have a default programmed and there is a possibility to read in a CSS file
(searchresults.css) in the directory "data" just in the directory from which the search application starts.
Here are a few hints as to how to change the CSS, and a reference to a document called "SelfHTML"
[http://de.selfhtml.org/] by Stefan Münz. If you like this can be downloaded and set up on you PC. I also
have it on my server (bes601). This is the best document I have seen on HTML.
In the case of our presentation the CSS is copied to the directory in which the search results are written
and is imported into the HTML document. As mentioned above you may edit the file searchresults.css in
the data directory to suit your needs or wishes. Here is a sample, an excerpt from a CSS file with each lay-
er colored differently and with many options as examples.

/*The style for the search results*/
body {background-color:#7F7F7F; color:#000000;font-family:'Century Schoolbook',serif; font-size:12pt;letter-spacing:3px; border:double;}
h1 {background-color:#FFFF00; color:#800000;font-family:'Century Schoolbook',serif; font-size:20pt;letter-spacing:3px;padding:10px}
h2 {background-color:#FFBF00; color:#800000;font-family:'Century Schoolbook',serif; font-size:18pt;letter-spacing:3px;}
h3 {background-color:#00FF3F; color:#800000;font-family:'Century Schoolbook',serif; font-size:16pt;letter-spacing:3px;padding:40px;}
h4{background-color:#FF7F00; color:#800000;font-family:'Century Schoolbook',serif; font-size:14pt;letter-spacing:3px;}
h5 {background-color:#00FF3F; color:#800000;font-family:'Century Schoolbook',serif; font-size:12pt;letter-spacing:3px;}
a {background-color:#FF9933; color:#5940BF;font-family:'Century Schoolbook',serif; font-size:12pt;letter-spacing:3px;}
p {background-color:#FF9F00; color:#2F2F2F;font-family:'Century Schoolbook',serif; font-size:12pt;letter-spacing:3px;}
ul {background-color:#FF7F7F; color:#800000;font-family:'Century Schoolbook',serif; font-size:12pt;letter-spacing:3px;}
ul li {background-color:#FFDF00; color:#800000;font-family:'Century Schoolbook',serif; font-size:12pt;letter-spacing:3px;

border-color:#000000; border-style:solid; border-width:thick; margin-bottom:3em}
ul li p {background-color:#C0C0C0; color:#800000;font-family:'Century Schoolbook',serif; font-size:12pt;letter-spacing:3px;}
ul li ul {background-color:#FF7F00; color:#800000;font-family:'Century Schoolbook',serif; font-size:12pt;letter-spacing:3px;}
ul li ul li {background-color:#C0C000; color:#800000;font-family:'Century Schoolbook',serif; font-size:12pt;letter-spacing:3px;

border-color:#C000C0; margin-bottom:0em}

On Using the Lucene Based Indexer and
Search Application

9

http://de.selfhtml.org/

ul li ul li p {background-color:#F0F0F0; color:#800F00;font-family:'Century Schoolbook',serif; font-size:12pt;letter-spacing:3px;}

With the style sheet one can control the format and layout of the report. I have added a variety of colors to
allow you the user to see the effect of each of the colors on the layout. Also it is possible to put "boxes"
around items and padding between the text and the "box" (border) and the space between the box and the
next item, the margin, can also be formatted.
Recall the basic structure of the output HTML file is the following

<!doctype html public "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta content="Text" name="D.C. Type"/>
<style type="text/css">
@import url(searchresults.css);
</style>
</head>
<body text="#000000" bgcolor="#FFFFFF" link="#FF0000" alink="#FF0000" vlink="#FF0000">
<!-- repeated for each document the list -->
 <!= the top level list, just once in document -->

 <!-- the list item for each document one li for each document-->
 <!-- list of information for the document -->

 <!-- list item for each type of information, title, synopisis, summay etc. -->

</body>
</html>

The style tag is part of the head (header) tag along with various meta data one may chose to include in the
file. The meta data are important for allowing web crawlers and such to classify the document. My experi-
ence is that these are often not present or very sloppily filled out. I have included a few, but this is hardly
necessary for such a document. In any event the CSS style sheet is either a in a comment section of the
style tag, or an external file, e.g., searchresults.css, which is referenced via the import directive (@import
url(file name);. In HTML a comment starts with <!-- and ends with -->.
The current default is much simpler and plain. The above is just to support the user in modifying the CSS
file to create a "personal" touch to the presentation.
Just a few hints. The tags used to present the data are ul (unordered list) and li (list item). I use them in a
nested fashion. That is as below.

The documents
Document 1

File ref for doc 1file ref
Summary for document 1<p>.....</p>

.

.

.

Thus to change the appearance of the results document, changes to the styles for ul and li will cover most
of the document. The style items such as padding, spacing etc are clear or can be made clear with experi-
ment. To change the colors it is more complex. Here is color reference to Netscape 256 colors palate
[http://de.selfhtml.org/diverses/anzeige/farbpalette_216.htm] . This is in the so called RGB model. The
letters and numbers are in HEX format (hexadecimal, 0-9,A,B,C,D,E,F, that is from 0 to 15. There are
much more detailed charts, which when you click on them, the code is put in the memory and can be pas-
ted into the field.

Organizing the application, batch files
The applications are started by a DOS batch files, called index.bat and search.bat. Both of these are set so
that the user can set an initial directory for the index. So for example from a DOS box (enter "start" "run"

On Using the Lucene Based Indexer and
Search Application

10

http://de.selfhtml.org/diverses/anzeige/farbpalette_216.htm

and cmd in the box in the run window.) one could enter the following command from the directory where
the application is installed:

index C:\Lucene\IndexDir\full

This would start the indexing program with the index directory set to C:\Lucene\IndexDir\full. However
this is too much if one wants to start this over again, so one creates a batch file (in the directory where the
application is installed or somewhere elsewhere {but then the path to the index.bat file must be complete}
put the above text into a file whose suffix is "bat".
It is also possible to have a shortcut with the above text as a command.
The same holds for the search.bat file. Actually this is more useful, as one indexes once and searches of-
ten.

Bibliography
2005. Otis Gospodnetic. Erick Hatcher. Lucene in Action. Manning. 209 Bruce Park Ave, Greenwich, CT

06830 (www.manning.com).
2004. Manfred Hardt. Fabian Thies. Suchmaschinen entwickeln mit Apache Lucene. Software & Support

Verlag. www.software-support-verlag.de.

Glossary
Selected Terminology related to text
processing

Boolean Search Choosing a document based on the presence or absence of items.
Chunking The process of recognizing higher level structures in a sentence,

chunks. e.g., (The post office) (will) (hold out) (discounts).
Corpus A collection of documents used for learning (machine learning), as a

source for a treebank.
Data Mining The exploration of data (usually well defined) sets to find quantitative

associations between variables.
Document Classification This activity involves parsing a document (with a program) and pla-

cing it in a group, that is classifying it. The standard method involves
using a set of pre-classificied documents to develop a rule for classi-
fication.

Document Clustering This is the process of examining a collection of documents and find-
ing associations be tween them and breaking the group into subgroups
(clusters)

Index In terms of search engines, an index is a list of tokens (words in ef-
fect) found in some document. Associated with each token there is a
list of documents in which the token was found. To then each docu-
ment the position of the token in the document is also stored.

Information Retrieval (IR) or
Information Extraction (IE)

Searching or gleaning information from defined sources. There are
subtitle differences between these terms. For example, when we use a
tool such as this to find a given document in a large collection of doc-
uments, this is information retrieval.

Named Entity Detection Named Entities are in effect a classification of words. This is used es-
pecially in areas such as PoS tagging (see below) and Natural Lan-
guage Processing

Natural Language Processing
(NLP)

The process of analyzing documents (sentences) in terms of language
structure.
Do not confuse with Neural Linguistic Programming (related to Hyp-
nosis Link Partners (really)

On Using the Lucene Based Indexer and
Search Application

11

Part of Speech Tagging (PoS
Tagging)

For each token detected, to affix the part of speech it had in the con-
text in which it was found.

Rating This is the procedure of affixing a value or number to a document to
allow the collection to be sorted to put the "most interesting" at the be-
ginning of the list. The exact procedures are usually not open for pub-
lic perusal. Lucene rates via the following:

• frequency of term in the document

• inverse document frequency of the term (how many documents in
index contain the term)

• booster factor -- default 1 -- can be set by user (programmer) as a
function of the term and the document.

• Normalization factor of a index, given the number of terms within
the index (thus not dependent on the term)

• coordination factor based on the number of terms the document
contains

Sentence Detection Filtering a document to find or break down into sentences. The is
more difficult than meets the eye.

Stemming The process of reducing a word to its stem (linguistically). For ex-
ample, gone, going, went, go would all be reduced to go. Big, bigger,
biggest would all map to big. This can be done with the use of a dic-
tionary or even via an algorithm. For the latter see: M.F. Porter, 1980.
An algorithm for suffix stripping, [Program, 14](3) 130-137. This is
the most Porter Stemming Algorithm.

Stop Words Words which are to excluded from the potential search (during index-
ing). In English for example, "he", "she", "the", and "and".

Text Mining The process of finding associations between words (not known in ad-
vance)

Tree Bank A collection of correctly parsed sentences. The best known is the Pen-
nTreebank.

Token A word or a unit in a text string. Usually separated by blanks from its
neighbors, but "-" and "_" are also used.

POI Terms
HDF HSSF Horrible Data Format: Java API to read Microsoft Excel
HSLF Java API for PowerPoint presentation (documents)
HPSF Horrible Property Set Format: Java API for reading property sets us-

ing (only) Java
HSSF Horrible Spreadsheet Format: Java API to read Microsoft Excel
HWPF Java API for reading and writing WinWord documents.
POIFS Poor Obfuscation Implementation File System: Java APIs for reading

and writing OLE (Object Linking and Embedding) 2 compound docu-
ment formats

Without the search engine Lucene from Apache I could not have developed this tool.

This document is in XML using the DocBook and Norman Walshe's stylesheets.

On Using the Lucene Based Indexer and
Search Application

12

	On Using the Lucene Based Indexer and Search Application
	Table of Contents
	Search Engines
	About the application and distribution
	Indexing
	Known Indexing Problems
	Updating an Index
	Searching
	Presentation
	Organizing the application, batch files
	Bibliography
	Glossary

